分布式锁,是控制分布式系统之间同步访问共享资源的一种方式。我们在java开发中也会经常使用到,不过对于新手java来说不清楚redis分布式锁实现原理是什么?下面来我们就来给大家讲解一下。
Redis分布式锁的实现原理图如下:
加锁机制
某个客户端要加锁。如果该客户端面对的是一个Redis Cluster集群,它首先会根据hash节点选择一台机器,这里注意,仅仅只是选择一台机器。紧接着就会发送一段lua脚本到redis上,lua脚本如下所示:
使用lua脚本,可以把一大堆业务逻辑通过封装在lua脚本发送给redis,保证这段赋值业务逻辑执行的原子性。在这段脚本中,这里KEYS[1]代表的是你加锁的那个key,比如说:RLock lock = redisson.getLock(“myLock”);这里你自己设置了加锁的那个锁key就是“myLock”。
ARGV[1]代表的就是锁key的默认生存时间,默认30秒。ARGV[2]代表的是加锁的客户端的ID,类似于下面这样:8743c9c0-0795-4907-87fd-6c719a6b4586:1。
脚本的意思大概是:第一段if判断语句,就是用“exists myLock”命令判断一下,如果你要加锁的那个key不存在,就可以进行加锁。加锁就是用“hset myLock 8743c9c0-0795-4907-87fd-6c719a6b4586:1 1”命令。通过这个命令设置一个hash数据结构,这个命令执行后,会出现一个类似下面的数据结构:
上述就代表“8743c9c0-0795-4907-87fd-6c719a6b4586:1”这个客户端对“myLock”这个锁key完成了加锁。接着会执行“pexpire myLock 30000”命令,设置myLock这个锁key的生存时间是30秒。好了,到此为止,ok,加锁完成了。
锁互斥机制
如果这个时候客户端B来尝试加锁,执行了同样的一段lua脚本。第一个if判断会执行“exists myLock”,发现myLock这个锁key已经存在。接着第二个if判断,判断myLock锁key的hash数据结构中,是否包含客户端B的ID,但明显没有,那么客户端B会获取到pttl myLock返回的一个数字,代表myLock这个锁key的剩余生存时间。此时客户端B会进入一个while循环,不听的尝试加锁。
watch dog自动延期机制
客户端A加锁的锁key默认生存时间只有30秒,如果超过了30秒,客户端A还想一直持有这把锁,怎么办?其实只要客户端A一旦加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果客户端A还持有锁key,那么就会不断的延长锁key的生存时间。
可重入加锁机制
客户端A已经持有锁了,然后可重入加锁,如下代码所示:
这个时候lua脚本是这样执行的:第一个if判断不成立,“exists myLock”会显示锁key已经存在了。第二个if判断会成立,因为myLock的hash数据结构中包含的那个ID,就是客户端A的ID,此时就会执行可重入加锁的逻辑,它会用“incrby myLock 8743c9c0-0795-4907-87fd-6c71a6b4586:1 1 ”这个命令对客户端A的加锁次数,累加1,此时myLock的数据结构变成下面这样:
即myLock的hash数据结构中的那个客户端ID,就对应着加锁的次数。
释放锁机制
执行lock.unlock(),就可以释放分布式锁。释放逻辑是:每次对myLock数据结构中的那个加锁次数减1,如果加锁次数为0了,说明客户端已经不再持有锁了,此时就会用“del MyLock”命令,从redis里删除了这个key。然后另外的客户端B就可以尝试完成加锁了。
上述Redis分布式锁的缺点
上面方案的最大问题,就是如果你对某个redis master实例,写入了myLock这种锁key的value,此时会异步复制给对应的master slave实例,但是这个过程中如果发送redis master宕机,主备切换,redis slave变为了redis master。
这就会导致客户端B来尝试加锁的时候,在新的redis master上完成了加锁,而客户端A也以为自己成功加了锁,此时就会导致多个客户端对一个分布式锁完成了加锁。这时就会导致各种脏数据的产生。
所以这个就是redis cluster,或者是redis master-slave架构的主从异步复制导致的redis分布式锁的最大缺陷:在redis master实例宕机的时候,可能导致多个客户端同时完成加锁。
redis分布式锁有哪些应用场景?
线程间并发问题和进程间并发问题都是可以通过分布式锁解决的,但是强烈不建议这样做!因为采用分布式锁解决这些小问题是非常消耗资源的!分布式锁应该用来解决分布式情况下的多进程并发问题才是最合适的。
有这样一个情境,线程A和线程B都共享某个变量X。
如果是单机情况下(单JVM),线程之间共享内存,只要使用线程锁就可以解决并发问题。
如果是分布式情况下(多JVM),线程A和线程B很可能不是在同一JVM中,这样线程锁就无法起到作用了,这时候就要用到分布式锁来解决。
总之Redis因为单进程、性能高的特点,它经常被用于做分布式锁,而redis分布式锁有很多应用场景并且能够解决很多线程之间的问题哦!最后大家如果想要了解更多java架构师知识,敬请关注奇Q工具网。
推荐阅读: