b树是如何建立的?b树基础原理详解

TheDisguiser 2020-05-27 22:55:16 java常见问答 10072

对b树相信大家都有一定的了解了,那你们知道b树该如何创建吗?下面快跟小编一起了解了解吧。

b树概念

一棵B树是有着下面几点性质的有根树:

a、每个节点中x有以下域:

1)num,当前存储在节点x的关键字个数,关键字以非降序存放,所以key[i]<=key[i+1]<=……key[n]。

2)isleaf,一个bool值,假如,x为叶子节点,那么,isleaf为true。

3)所有节点当中,包括num+1个指向其子女的指针p[0],p[1],……p[num]。

假如,x为叶子,p就为NULL。

(d)每个节点包括num个关键字key[0],key[1],……key[num-1]。

各关键字key[i]对存储在各子树中的关键字范围加以分隔: k1<=key[1]<=k2<=key[2]……

b、在b树当中,它的每个叶节点有着相同的深度。

c、在b树当中,它的每一个节点包含的关键字有上下界。

在这些界当中,能够用一个叫做b树的最小度数的固定整数M>=2来表示。

所有非根节点的个数n必须满足M-1<=n<=2M-1。

根节点要至少包括一个关键字。

假如,一个节点是满的,那么,它恰好有2M-1个关键字。

b树的创建

实例

创建一个空的b树:

/**********************************************************
函数功能:创建节点
输入:无
输出:新节点
**********************************************************/
BtreeNode * BtreeCreate()
{
    BtreeNode * node = (BtreeNode * ) malloc(sizeof(BtreeNode));
    if (NULL == node)
        return NULL;
    node - > isleaf = true;
    node - > num = 0;
    for (int i = 0; i < 2 * M; i++)
        node - > p[i] = NULL;
    for (int i = 0; i < 2 * M - 1; i++)
        node - > key[i] = 0;
    return node;
}

java中实现b树操作:

import java.util.ArrayList;
import java.util.List;
import java.util.Queue;
import java.util.concurrent.LinkedBlockingQueue;
public class BTreeextends Comparable >
{
    private static final int DEFAULT_T = 2;
    private BTNode root;
    // 最小度数
    private int t;
    // 非根节点的最少关键字个数
    private int minKeyNum;
    // 非根节点的最大关键字个数
    private int maxKeyNum;
    private class BTNode
    {
        // 关键字个数
        public int n = 0;
        public List keys = new ArrayList(maxKeyNum);
        public List children = new ArrayList(maxKeyNum + 1);
        public boolean isLeaf = true;
        public void insertKey(int index, E key)
        {
            keys.add(index, key);
            n++;
            if (keys.size() > maxKeyNum)
            {
                keys.remove(maxKeyNum);
            }
        }
        public E removeKey(int index)
        {
            E key = keys.remove(index);
            n--;
            return key;
        }
        public void insertChild(int index, BTNode child)
        {
            children.add(index, child);
            if (children.size() > maxKeyNum + 1)
            {
                children.remove(maxKeyNum + 1);
            }
        }
        public BTNode removeChild(int index)
        {
            BTNode child = children.remove(index);
            return child;
        }
    }
    public BTree()
    {
        this(DEFAULT_T);
    }
    public BTree(int degree)
    {
        if (degree < 2)
        {
            t = DEFAULT_T;
        }
        this.t = degree;
        this.minKeyNum = degree - 1;
        this.maxKeyNum = 2 * degree - 1;
        BTNode node = new BTNode();
        this.root = node;
    }
    private void sliptChild(BTNode x, int index)
    {
        // 新增结点
        BTNode z = new BTNode();
        BTNode y = x.children.get(index);
        z.isLeaf = y.isLeaf;
        for (int j = 0; j < minKeyNum; j++)
        {
            z.insertKey(j, y.keys.get(j + t));
        }
        if (!y.isLeaf)
        {
            for (int j = 0; j < t; j++)
            {
                z.insertChild(j, y.children.get(j + t));
            }
        }
        z.n = minKeyNum;
        y.n = minKeyNum;
        x.insertChild(index + 1, z);
        x.insertKey(index, y.keys.get(minKeyNum));
    }
    private void insertNoFull(BTNode x, E key)
    {
        int i = x.n - 1;
        if (x.isLeaf)
        {
            while (i >= 0 && key.compareTo(x.keys.get(i)) < 0)
                i--;
            x.insertKey(i + 1, key);
        }
        else
        {
            while (i >= 0 && key.compareTo(x.keys.get(i)) < 0)
                i--;
            i = i + 1;
            if (x.children.get(i)
                .n == maxKeyNum)
            {
                sliptChild(x, i);
                if (key.compareTo(x.keys.get(i)) > 0)
                    i = i + 1;
            }
            insertNoFull(x.children.get(i), key);
        }
    }
    public void insert(E key)
    {
        BTNode r = root;
        if (root.n == maxKeyNum)
        {
            BTNode newRoot = new BTNode();
            root = newRoot;
            newRoot.isLeaf = false;
            newRoot.insertChild(0, r);
            sliptChild(newRoot, 0);
            insertNoFull(newRoot, key);
        }
        else
            insertNoFull(r, key);
    }
    public void delete(E key)
    {
        delete(root, key);
    }
    private void delete(BTNode x, E key)
    {
        // 该过程需要保证,对非根节点执行删除操作时,其关键字个数至少为t。
        int n = x.n;
        assert n >= t || x == root;
        int i = 0;
        while (i < n && key.compareTo(x.keys.get(i)) > 0)
            i++;
        if (i < n && key.equals(x.keys.get(i)))
        {
            if (x.isLeaf)
            {
                // 1 如果当前结点是叶子结点,直接删除关键字
                x.removeKey(i);
            }
            else
            {
                BTNode y = x.children.get(i);
                BTNode z = x.children.get(i + 1);
                if (y.n >= t)
                {
                    // 2.a
                    E preKey = deleteMaxKey(y);
                    x.keys.set(i, preKey);
                }
                else if (z.n >= t)
                {
                    // 2.b
                    E nextKey = deleteMinKey(z);
                    x.keys.set(i, nextKey);
                }
                else
                {
                    // 2.c
                    int ySize = y.n;
                    int zSize = z.n;
                    y.insertKey(ySize, key);
                    ySize++;
                    boolean isChildLeaf = y.isLeaf;
                    for (int j = 0; j < zSize; j++)
                    {
                        y.insertKey(ySize, z.keys.get(j));
                        if (!isChildLeaf)
                        {
                            y.insertChild(ySize, z.children.get(j));
                        }
                        ySize++;
                    }
                    if (!isChildLeaf)
                    {
                        y.insertChild(ySize, z.children.get(zSize - 1));
                    }
                    x.removeKey(i);
                    x.removeChild(i + 1);
                    if (x.n == 0)
                    {
                        root = y;
                    }
                    delete(y, key);
                }
            }
        }
        else if (x.isLeaf)
        {
            // 没有找到该关键字,直接返回
            return;
        }
        else
        {
            BTNode child = x.children.get(i);
            boolean isChildLeaf = child.isLeaf;
            if (child.n >= t)
            {
                delete(child, key);
            }
            else if (i > 0 && x.children.get(i - 1)
                .n >= t)
            {
                // 3.a 左兄弟满足条件
                BTNode leftBrother = x.children.get(i - 1);
                int leftBrotherKeyNum = leftBrother.n;
                E leftBrotherLastKey = leftBrother.keys.get(leftBrotherKeyNum - 1);
                child.insertKey(0, x.keys.get(i - 1));
                x.keys.set(i - 1, leftBrotherLastKey);
                if (!isChildLeaf)
                {
                    BTNode leftBrotherLastChild = leftBrother.children.get(leftBrotherKeyNum);
                    child.insertChild(0, leftBrotherLastChild);
                    leftBrother.removeChild(leftBrotherKeyNum);
                }
                leftBrother.removeKey(leftBrotherKeyNum - 1);
                delete(child, key);
            }
            else if (i < x.n && x.children.get(i + 1)
                .n >= t)
            {
                // 3.a 右兄弟满足条件
                BTNode rightBrother = x.children.get(i + 1);
                E rightBrotherFirstKey = rightBrother.keys.get(0);
                int childKeyNum = child.n;
                child.insertKey(childKeyNum, x.keys.get(i));
                x.keys.set(i, rightBrotherFirstKey);
                if (!isChildLeaf)
                {
                    BTNode rightBrotherFirstChild = rightBrother.children.get(0);
                    child.insertChild(childKeyNum + 1, rightBrotherFirstChild);
                    rightBrother.removeChild(0);
                }
                rightBrother.removeKey(0);
                delete(child, key);
            }
            else if (i > 0)
            {
                // 3.b 存在左兄弟,合并
                BTNode leftBrother = x.children.get(i - 1);
                int leftBrotherKeyNum = leftBrother.n;
                leftBrother.insertKey(leftBrotherKeyNum, x.keys.get(i - 1));
                leftBrotherKeyNum++;
                for (int j = 0; j < t - 1; j++)
                {
                    leftBrother.insertKey(leftBrotherKeyNum, child.keys.get(j));
                    if (!isChildLeaf)
                    {
                        leftBrother.insertChild(leftBrotherKeyNum, child.children.get(j));
                    }
                    leftBrotherKeyNum++;
                }
                if (!isChildLeaf)
                {
                    leftBrother.insertChild(leftBrotherKeyNum, child.children.get(t - 1));
                }
                x.removeChild(i);
                x.removeKey(i - 1);
                if (x.n == 0)
                {
                    root = leftBrother;
                }
                delete(leftBrother, key);
            }
            else
            {
                // 3.b 存在右兄弟,合并
                BTNode rightBrother = x.children.get(i + 1);
                int childKeyNum = child.n;
                child.insertKey(childKeyNum, x.keys.get(i));
                childKeyNum++;
                for (int j = 0; j < t - 1; j++)
                {
                    child.insertKey(childKeyNum, rightBrother.keys.get(j));
                    if (!isChildLeaf)
                    {
                        child.insertChild(childKeyNum, rightBrother.children.get(j));
                    }
                    childKeyNum++;
                }
                if (!isChildLeaf)
                {
                    child.insertChild(childKeyNum, rightBrother.children.get(t - 1));
                }
                x.removeKey(i);
                x.removeChild(i + 1);
                if (x.n == 0)
                {
                    root = child;
                }
                delete(child, key);
            }
        }
    }
    private E deleteMinKey(BTNode x)
    {
        if (x.isLeaf)
        {
            return x.removeKey(0);
        }
        else
        {
            BTNode child = x.children.get(0);
            boolean isChildLeaf = child.isLeaf;
            BTNode rightBrother = x.children.get(1);
            if (child.n >= t)
            {
                return deleteMinKey(child);
            }
            else if (rightBrother.n >= t)
            {
                // 3.a
                E rightBrotherFirstKey = rightBrother.keys.get(0);
                int childKeyNum = child.n;
                child.insertKey(childKeyNum, x.keys.get(0));
                x.keys.set(0, rightBrotherFirstKey);
                if (!isChildLeaf)
                {
                    BTNode rightBrotherFirstChild = rightBrother.children.get(0);
                    child.insertChild(childKeyNum + 1, rightBrotherFirstChild);
                    rightBrother.removeChild(0);
                }
                rightBrother.removeKey(0);
                return deleteMinKey(child);
            }
            else
            {
                // 3.b
                int childKeyNum = child.n;
                child.insertKey(childKeyNum, x.keys.get(0));
                childKeyNum++;
                for (int j = 0; j < t - 1; j++)
                {
                    child.insertKey(childKeyNum, rightBrother.keys.get(j));
                    if (!isChildLeaf)
                    {
                        child.insertChild(childKeyNum, rightBrother.children.get(j));
                    }
                    childKeyNum++;
                }
                if (!isChildLeaf)
                {
                    child.insertChild(childKeyNum, rightBrother.children.get(t - 1));
                }
                x.removeChild(1);
                x.removeKey(0);
                return deleteMinKey(child);
            }
        }
    }
    private E deleteMaxKey(BTNode x)
    {
        int keyNum = x.n;
        if (x.isLeaf)
        {
            return x.removeKey(keyNum - 1);
        }
        else
        {
            BTNode child = x.children.get(keyNum);
            boolean isChildLeaf = child.isLeaf;
            BTNode leftBrother = x.children.get(keyNum - 1);
            int leftBrotherKeyNum = leftBrother.n;
            if (child.n >= t)
            {
                return deleteMaxKey(child);
            }
            else if (leftBrother.n >= t)
            {
                // 3.a
                E leftBrotherLastKey = leftBrother.keys.get(leftBrotherKeyNum - 1);
                child.insertKey(0, x.keys.get(keyNum - 1));
                x.keys.set(keyNum - 1, leftBrotherLastKey);
                if (!isChildLeaf)
                {
                    BTNode leftBrotherLastChild = leftBrother.children.get(leftBrotherKeyNum);
                    child.insertChild(0, leftBrotherLastChild);
                    leftBrother.removeChild(leftBrotherKeyNum);
                }
                leftBrother.removeKey(leftBrotherKeyNum - 1);
                return deleteMaxKey(child);
            }
            else
            {
                // 3.b
                leftBrother.insertKey(leftBrotherKeyNum, x.keys.get(keyNum - 1));
                leftBrotherKeyNum++;
                for (int j = 0; j < t - 1; j++)
                {
                    leftBrother.insertKey(leftBrotherKeyNum, child.keys.get(j));
                    if (!isChildLeaf)
                    {
                        leftBrother.insertChild(leftBrotherKeyNum, child.children.get(j));
                    }
                    leftBrotherKeyNum++;
                }
                if (!isChildLeaf)
                {
                    leftBrother.insertChild(leftBrotherKeyNum, child.children.get(t - 1));
                }
                // 删除关键字和孩子的操作最好放在后面来执行
                x.removeChild(keyNum);
                x.removeKey(keyNum - 1);
                return deleteMaxKey(leftBrother);
            }
        }
    }
    public void print()
    {
        Queue queue = new LinkedBlockingQueue.BTNode > ();
        queue.add(root);
        while (!queue.isEmpty())
        {
            BTNode node = queue.poll();
            for (int i = 0; i < node.n; i++)
            {
                System.out.print(node.keys.get(i) + " ");
            }
            System.out.println();
            if (!node.isLeaf)
            {
                for (int i = 0; i < node.n + 1; i++)
                {
                    queue.add(node.children.get(i));
                }
            }
        }
    }
    public static void main(String[] args)
    {
        BTree bTree = new BTree(2);
        bTree.insert("F");
        bTree.insert("S");
        bTree.insert("Q");
        bTree.insert("K");
        bTree.insert("C");
        bTree.insert("L");
        bTree.insert("H");
        bTree.insert("T");
        bTree.insert("V");
        bTree.insert("W");
        bTree.insert("M");
        bTree.insert("R");
        bTree.insert("N");
        bTree.insert("P");
        bTree.insert("A");
        bTree.insert("B");
        bTree.insert("X");
        bTree.insert("Y");
        bTree.insert("D");
        bTree.insert("Z");
        bTree.insert("E");
        bTree.delete("Z");
        bTree.delete("W");
        bTree.delete("D");
        bTree.delete("H");
        bTree.delete("K");
        bTree.delete("A");
        bTree.delete("Y");
        bTree.delete("F");
        bTree.delete("M");
        bTree.delete("Q");
        bTree.delete("R");
        bTree.delete("V");
        bTree.delete("P");
        bTree.delete("E");
        bTree.delete("B");
        bTree.delete("S");
        bTree.delete("N");
        bTree.delete("X");
        bTree.delete("T");
        bTree.delete("C");
        bTree.delete("L");
        bTree.print();
    }
}
以上就是创建b树的所有内容了,想了解更多b树相关的java常见问答知识,就请来关注我们网站吧。

推荐阅读:

b树的删除操作,图解

b树与b+树的区别是什么?各自有什么优点?

b树是二叉树吗?b树是什么树?